Creating an absolutely placed, checksum-protected library using IAR
Embedded Workbench for RX

This article shows how to create an absolutely placed library (functions and data), that can be integrity-
checked using a checksum. The idea is that the library can be separately verified and possibly certified
once, and later on used by other applications. The library is compiled and linked in a separate Embedded

Workbench project. The output is one ordinary ELF (or HEX) file, and one output file containing the
exported symbols. The symbols are exported using the “isymexport“-tool, described in the C/C++
Development Guide, chapter “The IAR Absolute Symbol Exporter - isymexport”.

The image below shows how the library is placed in ROM and RAM, and how it is separated from the

application.

OxFFFFFFEF

OxFFFEFBFFEF

O0xFFF80000

ROM

checksum

Library functions, data

and initializers (16 Kb)

Application (495 Kb)

0x00017FFF

0x0000C001

0x00000004

RAM

Library data, stack and

heap (47 Kb)

Application data, stack
and heap (47 Kb)

[= Checksummed area (0xFFFFC000 - 0xFFFFFFTD)

Creating the Library
1. Create a project for the library (functions and data). Note that Options -> Output should be set
to “Executable” (i.e. this is not a Library project).

2. Configure the target device (RX62N > R5F562N8).

Page 1 of 7

Configure the linker to use an address range separate from the application.
In this example project, the library uses the range OXFFFFCO0O to OxFFFFFFFF. See the linker
configuration file “1nkr5£562n8 1ib.icf”.

Select General Options -> Library Configuration -> Library: None

(1
Options for node "protected lib" l&]
Category:
[General Optons |
C/C++ Compiler
Assembler
Output Converter | | | Tanget | Output | Library Corfiguration | Library Options | Stack/Heap |+ | *
Custom Build) o
Build Actions Library: escription:
Linker Do not link with a runtime librarny.
Debugger
E1/E20 Emulator
IHink
Simulator I

Enable thread support in library

(] 3] [Cancel

Createa 1ib_init () function, for the Cinitialization. This function will copy the initial values for
static and global initialized variables from ROM to RAM, and initialize zero-initialized data to 0.
This is done by calling the “ _iar data init2” function, provided by the C-files in
“<EWRX>\rx\src\lib\rx”. In the example code, see the file “1ib func.c”.

Set the default program entry to "1ib_init" in Linker -> Library options.

Page 2 of 7

-

Options for node “protected_lib"

S5

Categony:

General Options
C/C++ Compiler
Assembler

Factory Settings

Output Converter | | | Config| Libmry |Input [Optimizations [Output | List | #define [D[4 »

Custom Build
Build Actions
Linker
Debugger

Jink
Simulator

Automatic runtime library selection
Include C-5PY debugging support

E1/E20 Emulator Additional libraries: {one per line)

Buffered write

Qveride default program entry

() Defined by application

_lib_init

(] 3] [Cancel

7. Make sure to add the “ root” keyword to the library functions and data, so that they are not
removed from the linked output file (since the functions are not used by the library itself). In this
example project, see the files “1ib_func.c” and “1ib data.c”. (Itis also possible to use the

linker option “--no_remove” to keep all symbols in the library).

8. Enable the checksum option in the linker options (CRC16 with range OxFFFFCO0O0 to OxFFFFFF7D).

Options for node "protected_lib"

=5c)

Categany:

General Options
C/C++ Compiler

Factory Settings

Assembler

Output Converter | | | Output [List | #define [Diagnostics | Checksum | Exira Options| [+ *

Custom Build

Build Actions

Flpsten___0cFF

Debugger Start address: m End address: M)
E1/E20 Emulator
ik Generate checksum
Simulator Checksum size: Alignment: 1

Algorithm: CRC16 | |E11021

Result in full size .
Initial value

Bit order: MSE first - Use as input

|| Reverse byte order within word

Chechksum unit size:

(] 3 J [Cancel

9. Place the checksum at the end of the ROM region (i.e. address OXFFFFFF7E), using "place at
end of ROM region32"and “keep {section .checksum}”in the linker configuration file. Note

Page 3 of 7

that it is important that the checksum value itself is not placed inside the checksummed area.
(Therefore, the calculation range stopped at OxFFFFFF7D in the previous step).

"CHECESTM™:
place at end of ROM region32 [ro section .checksum };
keep { section .checksum }:

10. Create an isymexport steering file that specifies which symbols that are included in the
isymexport output file. It is important not to export all symbols, especially the
“ iar data_init2” and other compiler-specific (“_iar+*”) functions may otherwise cause
conflicts with the application later on.
In this example, the steering file is called “sym export.txt” and contains the following (i.e. only
the 1ib_and _ checksum symbols are exported):

show 1ib_*
show _ checksum*

11. Add the export of library symbols in Build Actions -> Post-build command line:
STOOLKIT DIRS$\bin\isymexport.exe "STARGET PATHS"
"SPROJ DIRS\protected lib.symbols" --edit
"SPROJ DIRS\sym export.txt"

Options for node "protected_lib" . . -— lﬂ
—— -
Category:
General Options
CJ/C++ Compiler
Assembler
Output Converter Build Actions Configuration
Custom Build
Pre-build command line:
Linker E]
-,
Debugger r_F‘gst-huih:l command line:
E1/E20 Emulator STOOLKIT_DIRS'bin'isymexport exe "STARGET_PATHS" "SPROJ_]
J.-Llnk L y
Simulator
(0] 3] [Cancel

Page 4 of 7

Creating the Application
1. Create a project for the application.

2. Configure the target device (RX62N > R5F562N8).

3. Configure the linker to use an address range separate from the address range of the library.
In this example project, the application uses the range OxFFF80000 to OxFFFFBFFF. See the linker

configuration file “1nkr5£562n8 app.icf”.

4. Add the exported library symbols to Options -> Linker -> Library -> Additional libraries:

SPROJ DIRS\..\library\protected lib.symbols

-

.
Options for node “application” - - lﬁ
General Options
C/C++ Compiler
Assembler
Output Converter | | | Config | Library | input | Optimizations | Output | List | #define [D[« [
Custom Build
Build Actions Automatic runtime library selection
Include C-5PY debugging support
Debugger - [B ffared it
E1/E20 Emulator Additional libraries: {one per ling) 1
JHink SPROJ_DIRS\. \library'protected_lib symbols| - &
Simulator L
[] ©vermide defautt program ertry
(@ Entry symbol __iar_program_start
Defined by application
Ok] [Cancel

5. Inthe application's main function, check the value of the checksumvariable in the library.

In this example project, see the “main.c” file.

6. Inthe application's main function, make sure to call "1ib_init" to initialize the data in the

library. In this example project, see the “main.c” file.

Page 5 of 7

7. You can download the library to the target device (needed at least once) by adding the output

file to Options -> Debugger -> Images -> Download extra image -> Path:

$PROJ_DIRS\..\library\Debug\Exe\protected lib.out

(Note that for some devices, you may need to download the library ELF or HEX file separately).

Options for node “application” a— &J
General Options
C/C++ Compiler
Assembler
Output Converter Setup | Images | Extra Options I Plugins|
Custom Build
Build Actions
Linker Path: SPROJ_DIRS\. Mlibrary\ Debug'Exe'protected_lib.out [.. |
Debugger _
E1/E20 Emulator Offset: 0 [T Debugirfo only
IHink
Simlzlahor ["] Dawnload extra image
Debug info only
7] Download extra image
Debug info only
(] 3] [Cancel
Conclusion

Using the settings above, and the example project called “application”, it is now possible to debug the
application and library using the C-SPY Debugger. The linker map file for the application shows the
absolute location of the checksum variable (OxFFFFFF7E), and also the library functions and data.
Verify that the library functions are separated from the application (using the address range OxFFFFCO00

to OXFFFFFF7D).

After verification and certification of the library has been performed, the checksum ensures that the

exact same library code is used (by possibly different applications).

Page 6 of 7

application.map |

interrupt_359

privilege
ndefine

Oxe Code Wk interrupt table.o [5]
Code Wk def nmi handlers.oc [5]
Code Wk def nmi handlers.c [5]

0x2 Data Gb protected lib.symbols
- Gb protected_lib.symbols
- Gb protected_lib.symbols
Data Gb protected_lib.symbols
Code Gk cexit.o [5]

Code Wk def nmi_handlers.o [5]
Code Gb cstartup.o [5]

Code Gb castartup.o [5]

Code Gb catartup.o [5]

Data Gk mnmivec.o [5]

_ checksum {Abs}
_ checksum _begin [Abs]
_ checksum end {Abs}
checksum value

Ry B3 RX OB

_ float_placeholder
_ iar cstart_end

_ iar main call

_ iar program start
__iar reset_wvector

_abort 0xf Code Gb _ dbg_sbort.o [4]
_app_varl 0x00000004 0x4 Data Gb main.o [1]
_app_vard 0x00000008 0x4 Data Gb main.o [1]

_default handler
exit

_lib date_arr_ram {Abs] Ox0000c004
_1ib data_arr_rom {Abs} Oxffffc000
_lib data_zeroc {Abs} 0x0000c030
_1ib init {[Abs} c0d4
1ib test func [Absa]
_main

_3low_crclé
_wector_table

Oxe Code Gb interrupt table.o [5]
0x4 Code Gb exit.o [5]

0x28 Data Gb protected lib.symbols
0x28 Data Gb protected lib.symbols
0x4 Data Gb protected lib.symbols
0x7 Code Gb protected lib.symbols
0x9 Cepde Gb protected lib.symbols
0x73 Code Gb main.o [1]

0x32 Code Gb slow _crcl6.oc [1]
0x400 Data Gb interrupt_table.o [5]

SRSV N

Notes
a) Note that it is not necessary to select “Library Configuration -> Library: None” in the library
project. If you wish to use a C runtime library, it is possible to do so. Setting the Library to “None”
ensures that you do not get any runtime library code in your project.

b) As ageneral recommendation, the library project should not contain static and global initialized

variables. If the library project does not contain static and global initialized variables, there is no
need for the “lib_init” C initialization copy routines (and the project is simpler to create).

Page 7 of 7

