
Page 1 of 7

Creating an absolutely placed, checksum-protected library using IAR

Embedded Workbench for RX
This article shows how to create an absolutely placed library (functions and data), that can be integrity-

checked using a checksum. The idea is that the library can be separately verified and possibly certified

once, and later on used by other applications. The library is compiled and linked in a separate Embedded

Workbench project. The output is one ordinary ELF (or HEX) file, and one output file containing the

exported symbols. The symbols are exported using the “isymexport“-tool, described in the C/C++

Development Guide, chapter “The IAR Absolute Symbol Exporter - isymexport”.

The image below shows how the library is placed in ROM and RAM, and how it is separated from the

application.

Creating the Library
1. Create a project for the library (functions and data). Note that Options -> Output should be set

to “Executable” (i.e. this is not a Library project).

2. Configure the target device (RX62N > R5F562N8).

Library functions, data

and initializers (16 Kb)

ROM

checksum

0xFFF80000

0xFFFFFFFF

0xFFFFBFFF

Application (495 Kb)

Library data, stack and

heap (47 Kb)

RAM

0x00000004

0x00017FFF

0x0000C001

Application data, stack

and heap (47 Kb)

= Checksummed area (0xFFFFC000 – 0xFFFFFF7D)

Page 2 of 7

3. Configure the linker to use an address range separate from the application.

In this example project, the library uses the range 0xFFFFC000 to 0xFFFFFFFF. See the linker

configuration file “lnkr5f562n8_lib.icf”.

4. Select General Options -> Library Configuration -> Library: None

5. Create a lib_init() function, for the C initialization. This function will copy the initial values for

static and global initialized variables from ROM to RAM, and initialize zero-initialized data to 0.

This is done by calling the “__iar_data_init2” function, provided by the C-files in

“<EWRX>\rx\src\lib\rx”. In the example code, see the file “lib_func.c”.

6. Set the default program entry to "lib_init" in Linker -> Library options.

Page 3 of 7

7. Make sure to add the “__root” keyword to the library functions and data, so that they are not

removed from the linked output file (since the functions are not used by the library itself). In this

example project, see the files “lib_func.c” and “lib_data.c”. (It is also possible to use the

linker option “--no_remove” to keep all symbols in the library).

8. Enable the checksum option in the linker options (CRC16 with range 0xFFFFC000 to 0xFFFFFF7D).

9. Place the checksum at the end of the ROM region (i.e. address 0xFFFFFF7E), using "place at

end of ROM_region32" and “keep {section .checksum}“ in the linker configuration file. Note

Page 4 of 7

that it is important that the checksum value itself is not placed inside the checksummed area.

(Therefore, the calculation range stopped at 0xFFFFFF7D in the previous step).

10. Create an isymexport steering file that specifies which symbols that are included in the

isymexport output file. It is important not to export all symbols, especially the

“__iar_data_init2” and other compiler-specific (“__iar*”) functions may otherwise cause

conflicts with the application later on.

In this example, the steering file is called “sym_export.txt” and contains the following (i.e. only

the lib_ and __checksum symbols are exported):

11. Add the export of library symbols in Build Actions -> Post-build command line:

$TOOLKIT_DIR$\bin\isymexport.exe "$TARGET_PATH$"

"$PROJ_DIR$\protected_lib.symbols" --edit

"$PROJ_DIR$\sym_export.txt"

Page 5 of 7

Creating the Application
1. Create a project for the application.

2. Configure the target device (RX62N > R5F562N8).

3. Configure the linker to use an address range separate from the address range of the library.

In this example project, the application uses the range 0xFFF80000 to 0xFFFFBFFF. See the linker

configuration file “lnkr5f562n8_app.icf”.

4. Add the exported library symbols to Options -> Linker -> Library -> Additional libraries:
$PROJ_DIR$\..\library\protected_lib.symbols

5. In the application's main function, check the value of the __checksum variable in the library.

In this example project, see the “main.c” file.

6. In the application's main function, make sure to call "lib_init" to initialize the data in the

library. In this example project, see the “main.c” file.

Page 6 of 7

7. You can download the library to the target device (needed at least once) by adding the output

file to Options -> Debugger -> Images -> Download extra image -> Path:
$PROJ_DIR$\..\library\Debug\Exe\protected_lib.out

(Note that for some devices, you may need to download the library ELF or HEX file separately).

Conclusion
Using the settings above, and the example project called “application”, it is now possible to debug the

application and library using the C-SPY Debugger. The linker map file for the application shows the

absolute location of the __checksum variable (0xFFFFFF7E), and also the library functions and data.

Verify that the library functions are separated from the application (using the address range 0xFFFFC000

to 0xFFFFFF7D).

After verification and certification of the library has been performed, the checksum ensures that the

exact same library code is used (by possibly different applications).

Page 7 of 7

Notes
a) Note that it is not necessary to select “Library Configuration -> Library: None” in the library

project. If you wish to use a C runtime library, it is possible to do so. Setting the Library to “None”

ensures that you do not get any runtime library code in your project.

b) As a general recommendation, the library project should not contain static and global initialized

variables. If the library project does not contain static and global initialized variables, there is no

need for the “lib_init” C initialization copy routines (and the project is simpler to create).

